104 research outputs found

    Digital signal processing algorithms and structures for adaptive line enhancing

    Get PDF
    Imperial Users onl

    Deep Reinforcement Learning for Real-Time Optimization in NB-IoT Networks

    Get PDF
    NarrowBand-Internet of Things (NB-IoT) is an emerging cellular-based technology that offers a range of flexible configurations for massive IoT radio access from groups of devices with heterogeneous requirements. A configuration specifies the amount of radio resource allocated to each group of devices for random access and for data transmission. Assuming no knowledge of the traffic statistics, there exists an important challenge in "how to determine the configuration that maximizes the long-term average number of served IoT devices at each Transmission Time Interval (TTI) in an online fashion". Given the complexity of searching for optimal configuration, we first develop real-time configuration selection based on the tabular Q-learning (tabular-Q), the Linear Approximation based Q-learning (LA-Q), and the Deep Neural Network based Q-learning (DQN) in the single-parameter single-group scenario. Our results show that the proposed reinforcement learning based approaches considerably outperform the conventional heuristic approaches based on load estimation (LE-URC) in terms of the number of served IoT devices. This result also indicates that LA-Q and DQN can be good alternatives for tabular-Q to achieve almost the same performance with much less training time. We further advance LA-Q and DQN via Actions Aggregation (AA-LA-Q and AA-DQN) and via Cooperative Multi-Agent learning (CMA-DQN) for the multi-parameter multi-group scenario, thereby solve the problem that Q-learning agents do not converge in high-dimensional configurations. In this scenario, the superiority of the proposed Q-learning approaches over the conventional LE-URC approach significantly improves with the increase of configuration dimensions, and the CMA-DQN approach outperforms the other approaches in both throughput and training efficiency

    A look into the information your smartphone leaks

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Some smartphone applications (apps) pose a risk to users’ personal information. Events of apps leaking information stored in smartphones illustrate the danger that they present. In this paper, we investigate the amount of personal information leaked during the installation and use of apps when accessing the Internet. We have opted for the implementation of a Man-in-the-Middle proxy to intercept the network traffic generated by 20 popular free apps installed on different smartphones of distinctive vendors. This work describes the technical considerations and requirements for the deployment of the monitoring WiFi network employed during the conducted experiments. The presented results show that numerous mobile and personal unique identifiers, along with personal information are leaked by several of the evaluated apps, commonly during the installation process

    Adding Contextual Information to Intrusion Detection Systems Using Fuzzy Cognitive Maps

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In the last few years there has been considerable increase in the efficiency of Intrusion Detection Systems (IDSs). However, networks are still the victim of attacks. As the complexity of these attacks keeps increasing, new and more robust detection mechanisms need to be developed. The next generation of IDSs should be designed incorporating reasoning engines supported by contextual information about the network, cognitive information and situational awareness to improve their detection results. In this paper, we propose the use of a Fuzzy Cognitive Map (FCM) in conjunction with an IDS to incorporate contextual information into the detection process. We have evaluated the use of FCMs to adjust the Basic Probability Assignment (BPA) values defined prior to the data fusion process, which is crucial for the IDS that we have developed. The experimental results that we present verify that FCMs can improve the efficiency of our IDS by reducing the number of false alarms, while not affecting the number of correct detections

    Support Vector Machine for Network Intrusion and Cyber-Attack Detection

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Cyber-security threats are a growing concern in networked environments. The development of Intrusion Detection Systems (IDSs) is fundamental in order to provide extra level of security. We have developed an unsupervised anomaly-based IDS that uses statistical techniques to conduct the detection process. Despite providing many advantages, anomaly-based IDSs tend to generate a high number of false alarms. Machine Learning (ML) techniques have gained wide interest in tasks of intrusion detection. In this work, Support Vector Machine (SVM) is deemed as an ML technique that could complement the performance of our IDS, providing a second line of detection to reduce the number of false alarms, or as an alternative detection technique. We assess the performance of our IDS against one-class and two-class SVMs, using linear and non-linear forms. The results that we present show that linear two-class SVM generates highly accurate results, and the accuracy of the linear one-class SVM is very comparable, and it does not need training datasets associated with malicious data. Similarly, the results evidence that our IDS could benefit from the use of ML techniques to increase its accuracy when analysing datasets comprising of non-homogeneous features

    Using the Pattern-of-Life in Networks to Improve the Effectiveness of Intrusion Detection Systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.As the complexity of cyber-attacks keeps increasing, new and more robust detection mechanisms need to be developed. The next generation of Intrusion Detection Systems (IDSs) should be able to adapt their detection characteristics based not only on the measureable network traffic, but also on the available high- level information related to the protected network to improve their detection results. We make use of the Pattern-of-Life (PoL) of a network as the main source of high-level information, which is correlated with the time of the day and the usage of the network resources. We propose the use of a Fuzzy Cognitive Map (FCM) to incorporate the PoL into the detection process. The main aim of this work is to evidence the improved the detection performance of an IDS using an FCM to leverage on network related contextual information. The results that we present verify that the proposed method improves the effectiveness of our IDS by reducing the total number of false alarms; providing an improvement of 9.68% when all the considered metrics are combined and a peak improvement of up to 35.64%, depending on particular metric combination

    Buffer-aided relay selection with reduced packet delay in cooperative networks

    Get PDF
    Applying data buffers at relay nodes significantly improves the outage performance in relay networks, but the performance gain is often at the price of long packet delays. In this paper, a novel relay selection scheme with significantly reduced packet delay is proposed. The outage probability and average packet delay of the proposed scheme under different channel scenarios are analyzed. Simulation results are also given to verify the analysis. The analytical and simulation results show that, compared with non-buffer-aided relay selection schemes, the proposed scheme has not only significant gain in outage performance but also similar average packet delay when the channel signal-to-noise ratio (SNR) is high enough, making it an attractive scheme in practice

    Distributed Foresighted Energy Management in Smart-Grid-Powered Cellular Networks

    Get PDF
    This paper studies energy management in a smart grid-powered cellular network consisting of an independent system operator (ISO) and multiple geographically distributed aggregators. The aggregators have energy storage devices and can purchase energy from the electric grid via the ISO to serve their users. To account for the uncertainty of the renewable energy supply as well as the impacts of multiple aggregators on the electric grid and energy prices, a foresighted strategy combined with the adaptive ε-greedy method is developed for the aggregators to distributively and adaptively minimize the long-term overall cost of the system, based on the ahead-of-time decision making of the storage pre-charging amount. Simulation results validate that the proposed strategy surpasses a recent learning-based storage management design and a myopic design

    A novel semiblind signal extraction approach for the removal of eye-blink artifact from EEGs

    Get PDF
    A novel blind signal extraction (BSE) scheme for the removal of eye-blink artifact from electroencephalogram (EEG) signals is proposed. In this method, in order to remove the artifact, the source extraction algorithm is provided with an estimation of the column of the mixing matrix corresponding to the point source eye-blink artifact. The eye-blink source is first extracted and then cleaned, artifact-removed EEGs are subsequently reconstructed by a deflation method. The a priori knowledge, namely, the vector, corresponding to the spatial distribution of the eye-blink factor, is identified by fitting a space-time-frequency (STF) model to the EEG measurements using the parallel factor (PARAFAC) analysis method. Hence, we call the BSE approach semiblind signal extraction (SBSE). This approach introduces the possibility of incorporating PARAFAC within the blind source extraction framework for single trial EEG processing applications and the respected formulations. Moreover, aiming at extracting the eyeblink artifact, it exploits the spatial as well as temporal prior information during the extraction procedure. Experiments on synthetic data and real EEG measurements confirm that the proposed algorithm effectively identifies and removes the eye-blink artifact from raw EEG measurements
    corecore